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Abstract

The paper examines a selection of well-established prediction methods employed for the modelling of
multiphase turbulent flows presented in typical environmental and hydrodynamic applications. The main
objective is to provide a basic understanding of the subject with a deliberate intention to simplifying the
presentation. Turbulence is approached on the basis of the conventional one-point closure context. The
experience gathered by the author and by others with various predictive strategies all based on the Eule-
rian–Eulerian (field description) and the Eulerian–Lagrangian methods are discussed and summarized; the
goals, limitations, and required developments are described. Typical applications of each calculation
method are presented, in which the interaction between the transported dispersed-phase and the field
turbulence is treated on the basis of both one-way and two-way coupling. The case studies in question
include aerosol production and transport over the oceans, pollutant dispersion in the atmospheric surface
layer, hydrometeor impact on urban canopies, sedimentation of active sludge in secondary water clarifiers,
and mixing and circulation within confined bubble plumes. Analysis of the various models reveals that for
most of the reported applications the Reynolds averaged Navier–Stokes approach is inherently ill-posed
and should be transcended by the promising large-eddy simulation concept. � 2002 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

This paper is written in the spirit of an overview of different multiphase modelling methods,
with emphasis on the practical motivations for certain selected applications and the expected
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returns from computational analyses. The role of simulation strategies in the prediction and
design processes is also discussed. The deliberate choice of applications is motivated by the variety
of solution methods applied in each case; we aim at discussing them in the sections to follow. The
methods are discussed in a comprehensive and simplistic way based on known ideas and prin-
ciples. An overview of the state-of-the-art is presented in treating the various subjects using the
Eulerian–Eulerian method in both the one-fluid and two-fluid (interpenetrating media) formu-
lations, as well as by the Eulerian–Lagrangian variant. Since the flows considered herein are
presently out of reach of direct and large-eddy simulation approaches (DNS and LES), we es-
sentially focus on the implications of turbulence modelling (by reference to the Reynolds Aver-
aged Navier–Stokes Equations, RANS) in the various computational frameworks discussed in
this paper, and the way this conventional approach could be improved on by more elaborate ones.
In support of this, practical case studies typical of environmental and hydrodynamic applications
are presented. Apart from the applications with reference to hydrodynamic applications CS5 and
CS6, the interaction between the transported phase and the field turbulence is treated in all other
cases on the basis of one-way coupling. Note, too, that the paper does not deal with simplified
simulation approaches, for example, with the so-called Gaussian models employed for atmospheric
dispersion modelling (cf. Hangan, 1999).

Eulerian–Eulerian and Eulerian–Lagrangian methods have been extensively used to simulate
particle dispersion. Depending on the nature of the case studies in question it is possible to employ
a specific form of each of the two solution methods. But prior to that, it is worth highlighting
the main differences between these two strategies, i.e. the Eulerian–Eulerian vs. the Eulerian–
Lagrangian methods. The choice between these two procedures is in essence problem-dependent.
The Eulerian or field description methodology is commonly adopted for the prediction of in-
terpenetrating media situations, including both highly particle loaded systems such as fluidized
beds, dilute particle-laden flows as in the case of dilute suspensions of aerosols, droplets and
particles, and gas–liquid mixtures such as bubbly flows. This approach can be employed in two
distinctive forms: The one-fluid formulation and the two-fluid approach. In the first approach,
generally employed in the form of a one-field description of highly-loaded or dilute suspensions
formed by concentrations of droplets and particles, the particle concentrations are assumed to
have some characteristics of a continuous phase (e.g. the local concentration) and, when ap-
propriate, some of a dispersed phase (e.g. the inertial slip). In other words, the method essentially
consists in solving an extra conservation law for the concentration of particles or for their mean
spatial density. Modifications of the transport equations are also needed to consider buoyancy
forces whenever the two phases exhibit differences in density due to the presence of a heavier
dispersed phase (e.g. sedimentation problems, snow avalanches, etc.), or when the carrier phase
features thermal stratification as is often the case in geophysical flows (e.g. thermal fronts, at-
mospheric surface layer, etc.). In addition, the transport equations must include interfacial ex-
change laws to account for mass transfer whenever the dispersed phase evaporates or condenses,
e.g. evaporative marine droplets over the ocean. The combination of all these processes leads to a
system of equations with a multitude of closure laws. In this respect, the closure relationships for
the turbulent concentration or heat flux arising from Reynolds averaging conceptually follow the
manner in which the mechanical turbulent stresses are approximated. This important issue is
examined herein, too, in particular when the closure law for turbulence is a two-equation based
approach, in which the buoyancy-induced contributions are represented in terms of additional
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source terms in the turbulence equations with some adjustable coefficients. In the second ap-
proach, also known as the six equation model approach, the phases are treated as two inter-
penetrating continua evolving within a single system: Each point in the mixture is occupied
simultaneously (in variable proportions) by both phases. Each phase is then governed by
its own conservation and constitutive equations; these are then coupled through interphase in-
teraction properties. More precisely, in contrast to the one-fluid formulation, convective and
diffusive processes are explicitly taken into account in each of the two phases. For example,
mixtures of two immiscible fluids such as air bubbles in water cannot be considered as mixtures of
dilute suspensions evolving within a liquid phase; they have to be simulated via the two-fluid
approach.

In the Lagrangian reference frame individual particles or clouds of particles are treated in a
discrete way. The reference frame moves with the particles, and the instantaneous location of each
particle is determined by reference to its origin and the time elapsed. Lagrangian methods em-
ployed for particle tracking are conventionally based on the equation of motion for spherical
particles at high-Reynolds numbers, as given by Clift et al. (1978), also known as Basset–Bous-
sinesq–Oseen (BBO) equation (cf. Crowe et al., 1996). The dispersed phases are assumed to be
heavy and smaller than the Kolmogorov microscales. As a prerequisite computational sequence
the flow field has to be known since tracking individual particles directly relies on its properties,
i.e. velocity field and turbulence statistics. In practical applications the flow field is modelled by
use of RANS, whereas the resort to DNS (Squires and Eaton, 1990; Mosyak and Hetsroni, 1999;
Ahmed and Elghobashi, 2000; Sawford and Yeung, 2001) or LES (Yeh and Lei, 1991; Wang and
Squires, 1996; Armenio et al., 1999; Boivin et al., 2000; Okong’o and Bellan, 2000) is still confined
to research studies dealing for example with turbulence–particle interactions.

A variety of models accounting for the effects of turbulence on particle motion are available in
the literature. A critical review of the variants employed for heavy particles in atmospheric tur-
bulence is proposed by Wilson (2000). Another interesting review is that of Shirolkar et al. (1996)
focusing on models used for dispersion in combustion problems. On the upper level of classifi-
cation the models differ depending on whether they are applied to passive tracers (see, for ex-
ample, Thomson, 1987) or to inertial particles (IP). The present work places emphasis on the
second class of models only. A subcategory of IP dispersion models is an approach based on a
Markov chain process, which is a finite discrete form of the Langevin equation supposed to model
the fluctuating particle velocities in a purely stochastic way. This equation was first employed for
the study of Brownian motion by Wang and Uhlenbeck (1945), and was only later applied to
describe dispersion in homogeneous turbulence by Lin and Reid (1962). The other often employed
random-flight algorithms treated in this paper are based on the generation of non-miscible (un-
correlated) random eddies, in which particle trajectories are purely deterministic. These are known
as eddy interaction models (EIM), perhaps initially proposed by Gossman and Ioannides (1981).
Here it is assumed that individual particles are subject to a series of interactions with randomly
sampled eddies; the particle velocity remains constant during each particle–eddy interaction time,
during which the eddy velocity remains unchanged. The difference between the two methods is
that Markov chain type models provide a continuous fluctuating velocity field, whereas in EIMs
the fluctuating velocity changes only when individual particles encounter a new eddy. This is the
reason why MacInnes and Bracco (1992) refer to the first class as continuous random walk models
and to the second as discontinuous random walk models.
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The Eulerian–Lagrangian formalism thus amounts to the combination of two separate ap-
proaches: The Eulerian part delivers the flow field with its turbulent statistical properties, and the
Lagrangian module employs these data to track individual particles. The parametrization of
particle dispersion is therefore intimately tied to the dynamics of field turbulence. This is, of
course, the case for dispersed phases smaller than the Kolmogorov micro-scales, whose inter-
action with turbulence is commonly termed one-way coupling by reference to the weak effect
of particle momentum on turbulence. These two methods are here discussed in their original
modelling context and in the LES framework.

Still, the Eulerian approach for simulating turbulent dispersion has its own advantages as
compared to Lagrangian methods. For flow laden with a large amount of particles the quanti-
tative description of the variation in particle concentration is much simpler by means of the
Eulerian method since, for the same purpose, statistical sampling is required with the Lagrangian
description. Lagrangian methods may also face problems whenever the cloud of particles tracked
is larger than the fluid parcel over which volume averaging is performed. And apart from that, the
Eulerian approach allows both phases to be computed over a single grid, whereas the Lagrangian
methods require the interpolation of quantities between the fixed grid nodes and the local position
of particles. However, treating particles via the Lagrangian formalism is in essence natural be-
cause their motion is tracked as they move through the flow field, which preserves their actual
non-continuum behaviour and accounts for their history effects in a natural way. In addition, if
attention is now redirected towards turbulence modelling, the Lagrangian approach holds a
fundamental advantage over the Eulerian one in the sense that it does not require closure as-
sumptions for turbulence correlations of tracer concentration and velocity fluctuations. More
about the relative merits of these approaches is given by Durst et al. (1994) and Mostafa and
Mongia (1987).

The present paper is structured as follows: Selected applications are first introduced to grad-
ually highlight the expected results of computational analyses. These selected case studies (see
Section 2) are referred to as CS1, CS2; . . . ;CS6, respectively. Based on an extended literature
survey the solution procedures employed so far in each case are introduced in Section 3. Section 4
is devoted to computational examples, where the solution methods are examined in the light of
calculation results. Finally, key remarks are made in connection with computational strategies
and turbulence models together with the presentation of an outlook on future developments.

2. Typical applications in environmental and hydrodynamic research

2.1. Pollutant transport in the urban canopy

This type of study enters within the large framework of computational wind engineering (CWE),
a discipline that has been progressing since the late 1970s, boosted by its potential to overcome the
limitations of earlier simplified physical models such as the Gaussian models evoked previously in
Section 1. Pollutant dispersion within the atmospheric surface layer encompasses a variety of
aspects of vital interest that need to be explored: For example, predicting the transport of con-
taminants from hazardous releases, analyzing the traffic-induced dispersion (Rafailidis, 2000;
Kastner-Klein et al., 1997; Meroney et al., 1999), and studying the effects of neighbouring
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building topography on domestic gas-releases (Cowan et al., 1997; Delaunay et al., 1997; Hangan,
1999; Castro et al., 1999). Without considering the thorny question of predicting the behaviour of
hazardous gas releases (Chernobyl type of tragedies) to the atmosphere, we could evoke a similar
problem that draws less attention, but may nevertheless have an impact on daily life: The quality
of air inside a single or a group of buildings and its relation to external aerodynamic conditions.
These flow conditions can, for example, connect an external source of pollutants (chimneys re-
leasing exhaust gases from centralized heating devices) with fresh-air admission (windows, etc.)
which could in turn be contaminated. Although recent contributions to the field have taken
further steps by dealing with dispersion around complex (several buildings) configurations (e.g.
Hangan, 1999; Castro et al., 1999), the example selected here consists of the three-dimensional
prediction of gas dispersion around an isolated, generic building model placed within a simulated
urban canopy studied by Delaunay et al. (1997). The aim of this investigation was to provide
architects and civil engineers with sufficient indications regarding the flow structure to help them
design a group of buildings in which the recirculation of contaminants through fresh air admis-
sions can be minimized.

2.2. Car-induced pollution in urban areas

Car-induced pollution in urban areas is a serious health concern, in particular within cities 1

featuring many street canyons. Most often building aggregates placed within the atmospheric
boundary layer may act as artificial obstacles to the wind and cause stagnant conditions. Ex-
perimental and numerical studies of such problems aim in general at predicting the time evolution
of pollutant concentrations and their implications for the comfort of pedestrians as a function of
geometry and pollutant doses (Mestayer et al., 1993; Sini et al., 1996; Moussiopoulos et al., 1998;
Rafailidis, 2000). Previous studies showed the number and arrangement of vortex structures
within the street canyon to strongly influence vertical exchange rates. It has also been shown that
differential heating of street surfaces can grossly influence the capability of the flow to transport
and exchange pollutants (Sini et al., 1996). In particular, differential heating could also shift the
in-street flow structure from a single-vortex flow to a flow with several counter-rotating vortices.
We report here on the results of a recent simulation, conducted by Theodoridis and Moussio-
poulos (2000), of the flow and contaminant transport within a typical street-canyon configuration
studied experimentally by Rafailidis (2000). In contrast to earlier studies, a number of interesting
and original issues typical for this type of problem have been dealt with by the authors, focusing
for example on the determination of the subsequent production of NOx and ozone.

2.3. Dispersion of marine droplets

The fundamental issues of surface layer meteorology have been reviewed by many specialists,
e.g. H€oogstro €mm (1996). More specifically with respect to marine climatology Smith et al. (1996)
have made available a complete overview leading to a better understanding of air–sea interaction.

1 Some Mediterranean cities suffer today because their developers opted in the past for street-canyon type

conglomerations seeking for shadow (e.g. Medina and Casbah in North Africa).
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The authors review the progress achieved in the study of air–sea interaction over the past three
decades and its role in the modelling of the coupled system of ocean and atmosphere. Melville
(1996) placed emphasis on the role of surface–wave breaking in air–sea interaction and the
subsequent impact of aerosol production and transport. More precisely, it is the impact of marine
droplets and aerosols on the heat flux balance that represents the key point in this branch, as
discussed by Smith et al. (1996) and Fairall et al. (2000). Indeed, the evaporative droplets are
known to distort the normal sensible/latent heat flux balance, whereas in their absence the entire
surface moisture flux produces a latent heat loss by the ocean leading to an increase in the salinity
at the surface. The central issue here is to understand the contribution of sea spray droplets to the
transfer of moisture and latent heat from the sea to the atmosphere. The case study reported in the
present review refers to the two-dimensional simulation of the turbulent transport and evapo-
ration of droplets ejected by bursting bubbles within various simulated air–sea boundary layers
(Edson and Fairall, 1994; Edson et al., 1996). An integrated Eulerian–Lagrangian strategy was
employed to compute the flow, temperature and moisture fields, and the trajectory of each ejected
droplet; in particular, the particle trajectories were computed by means of a Markov chain based
on the discretization of the Langevin equation for dispersed particles, modified to account for the
effects of turbulence, gravity and inertia. This type of Lagrangian technique is presently being
employed within the LES framework for other related subjects such as the prediction of pollution
dispersion in the atmosphere (e.g. Sorbjan and Uliasz, 1999). Studying the generation, transfer
mechanisms and aerosol deposition over the ocean has also been migrating gradually from RANS
(e.g. Ling et al., 1980; Burk, 1984) to LES (e.g. Glendening and Burk, 1992), although the
Eulerian description is still preferred to the Lagrangian one.

2.4. Impacting hydrometeors on buildings

The deterioration experienced by buildings and monuments is caused in part by the direct
impact of hydrometeors and subsequent deposition of moisture on the surface. In contrast to the
effects caused by the spectacular impact of heavy hydrometeors such as hail, the more subtle
degradations caused by moisture deposited by rain, snow and fog are less well assessed. In these
instances, the deposited moisture can cause mechanical disruptions by freezing within fissures or
by actually dissolving the materials. In addition, atmospheric pollutants dissolved or suspended in
water droplets can be carried to the surface. Once these pollutants have been deposited on the
surface, capillarity can transport the moisture and pollutants into the interior of porous materials.
This often results in chemical transformations and deterioration deep within these structures. For
this class of flow the literature reports on a very limited number of computational investigations;
the earlier ones have adopted simplified formulations relating the intensity of driving rains to the
free-falling rain intensity and wind speed (e.g. Lacy, 1977; Beguin, 1985; Hilaire and Savina,
1989). More elaborate strategies based upon the Eulerian–Lagrangian approach appeared only
recently (e.g. Choi, 1994; Lakehal et al., 1995; Sankaran and Paterson, 1997; Karagiozis et al.,
1997). However, the only contribution in this field combining in a single model the effects of
turbulence, gravity, and inertia is due to Lakehal et al. (1995). The example reported here (from
these authors’ work) centers around the prediction of wind-driven raindrop trajectories inside a
two-dimensional street canyon; the final aim was to evaluate the impacting water rate on the
facades. The solution procedure was again based on an integrated Eulerian–Lagrangian method,
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and the particle trajectories were computed by means of a Markov chain modified to account for
the effects of turbulence, gravity, and inertia.

2.5. Sedimentation in water clarifiers

Settling and sedimentation phenomena are complex processes, repeatedly evoked in hydro-
dynamic applications; their presence within wastewater treatment plants as the most important
unit operations is one example among various others. It is well known that gravity-induced
sedimentation and the subsequent thickening process may be subdivided into four different types:
Discrete particle settling, flocculent settling, hindered settling, and compression (see, for example,
Karl and Wells (1999) for classification). The thickening process in water clarifiers occurs most
often as a combination of the last three forms, which poses challenges to the modeler. The recent
critical review of Parker et al. (2001) reports on the important design aspects properly applicable
to clarifier technology that need to be observed. Investigating this type of flow is dictated by
design interests: It is aimed at helping to design secondary clarifiers, whose efficiency is such that
the overall performance of the entire wastewater treatment does not require post operations
(Krebs et al., 1996). An intensive scientific effort has recently been made in order to understand
this type of flow, and various numerical models have been developed for the purpose, most of
which are based on two-equation turbulence models describing the flow pattern and sediment-
induced density currents (Lyn et al., 1992; Zhou et al., 1992; Zhou and McCorquodale, 1992;
Szalai et al., 1994; Vitasovic et al., 1997; Armbruster et al., 2001). Apart from Lyn et al. (1992) the
above cited works did not consider particle decompositions and were thereby based on the de-
termination of an average settling velocity for suspended particles. Jin et al. (2000) have recently
taken a step ahead by proposing a one-dimensional model for non-uniform sediment transport
capable of handling flocculation, coagulation, and filtration. This type of flow raises additional
complexities as compared to pollutant dispersion problems. Buoyancy effects may be more im-
portant than those induced by turbulent stresses. The transported phase settles at a velocity
strongly influenced by its concentration. Finally, the non-Newtonian behaviour of the activated
sludge requires appropriate definition of its rheological properties. The results of modelling the
sedimentation of a sludge blanket in a circular, center-fed secondary clarifier with inclined bottom
and central withdrawal are presented. Axisymmetry is assumed and the flow and settling processes
(with variable settling velocities) are computed in a radial section. The non-Newtonian behaviour
of the sludge is also taken into account.

2.6. Bubble plumes

Three-dimensional mixing of multiphase flows may occur in industrial applications as well as in
environment protection processes. Industrial applications include gas stirring by liquid metal
ladles in several metallurgical processes, or venting of vapour mixtures to liquid pools in chemical
and nuclear reactors. Bubble plumes may also be involved in environment protection problems
such as the aeration of lakes, mixing of stagnant water and, generally, de-stratification of water
reservoirs. For all these applications the basic need is to determine the currents induced by the
gaseous phase evolving in the surrounding liquid and thereby to establish the consequent mixing
and partition of energy, or species concentration in the body of the liquid. Here the computational
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methodology to be followed is the two-fluid approach of Ishii (1975) evoked previously. However,
more important is the fact that predicting bubbly flows cannot be achieved without suitable
models capable of correctly representing interphase momentum transfer mechanisms and tur-
bulence modulation induced by the bubbles. For the latter issue, various models have been
published in the past, though all of them resort to a single-phase two-equation turbulence model
modified to account for these exchange mechanisms (Malin and Spalding, 1984). This includes the
effect of bubble migration through the liquid (Simonin and Viollet, 1988), and more often the
interactions between the eddies and the dispersed phase via what is known as turbulent dispersion
models (see, for example, Moraga et al., 2001, for a recent review). In practice the idea of tur-
bulence dispersion induced by the dispersed phase has most often been reflected in terms of a
superposition of the shear-induced and bubble-induced stress tensors in the equations for the
liquid phase; the latter being constructed on the basis of scaling arguments. The example reported
here consists of the prediction of a confined bubble plume studied experimentally by Anagbo and
Brimacombe (1990). The numerical results reported here were obtained by Smith and Milelli
(1998), who made a critical assessment of various models that have so far been advanced to
support modelling of bubbly flows.

3. Outline of the solution methods

3.1. The Eulerian–Eulerian one-fluid approach

3.1.1. Background
To handle the transport of a dilute continuum acting as a passive scalar within a turbulent flow

one generally resorts to the so-called Eulerian–Eulerian one-field formalism. In this approach the
particle concentrations are assumed to have some characteristics of a continuous phase and some
characteristics of a dispersed phase via the inertial slip, when appropriate (e.g. when the particles
settle). An inherent concept in this formalism is the assumption that the transported (passive or
active scalar) phase obeys the same Navier–Stokes equation governing the mean flow, since there
is no interfacial or interphase exchange processes to account for. However, in general, the pres-
ence of heavy particles with non-negligible inertia raises simulation problems not yet totally re-
solved, such as the lack of appropriate boundary conditions.

3.1.2. The transport equations
The Eulerian–Eulerian approach is essentially based on the solution of the Reynolds Aver-

aged 2 Navier–Stokes equations (RANS) governing the motion of an incompressible carrier phase
(cf. Hinze, 1975), together with a transport equation for the dilute phase:

@jUj ¼ 0; ð1Þ

DtUi ¼ �1=qw@ip þ @j rij

�
� sij

�
þ~ff ; ð2Þ

2 Hereinafter each barred symbol represents an ensemble average, while primed letters denote the fluctuating

counterparts.
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DtC ¼ Dr2C � @ju0jc0: ð3Þ

In the above equations, Dt ¼ @t þ u � r stands for the substantial derivative, rij the viscous stress,
qw the mean density of the fluid at a reference state, p the pressure, D the molecular diffusivity
coefficient, and sij 	 u0iu0j the Reynolds stress tensor that requires a model. The buoyancy force
term, ~ff , is effective only in thermally stratified flows and/or when the dispersed phase is appre-
ciably heavier than the carrier fluid. For instance, case studies CS1, CS2 and CS5 were treated on
the basis of Eqs. (1)–(3), with ~ff ¼ 0 for the first two examples.

3.1.3. Thermally stratified flows with mass transfer
The presence of an evaporative medium (e.g. marine droplets) within a thermally stratified flow

(e.g. a marine sublayer) can be treated on the basis of the RANS equations (1) and (2), using the
Boussinesq approximation, in which the buoyancy force term now reads ~ff ¼ �giðHv � Hr

vÞ=Hr
v.

This term is induced by the difference between the instantaneous virtual potential temperature 3

Hv and that of the reference state Hr
v. According to Stull (1988), the presence of water droplets

requires the virtual potential temperature to conform to the following relation

Hv ¼ H 1½ þ 0:61qV � qL � qD�; ð5Þ
in which qL is the specific humidity of the liquid, and qD the contribution to the total specific
humidity from the droplets to be determined by integrating the local droplet volume concen-
tration. At high-Reynolds numbers the thermal and moisture fields are represented by the Rey-
nolds averaged transport equations for the potential temperature H and the total specific
humidity denoted: Q ¼ qV þ qL

DtH ¼ �@ju0jh þ LESq=Cp; ð6Þ

DtQ ¼ �@ju0jqþ Sq: ð7Þ

In these equations Cp stands for the specific heat at constant pressure, LE for the latent heat of
vaporization, and Sq for the total evaporation rate. The reader can refer to Pruppacher and Klett
(1978) for more details on the modelling of the source term Sq. Note that the molecular diffusion
contributions in the above equations have been dropped, since only high-Re number flows are of
interest in these studies. The turbulent fluxes u0jq and u0jh appearing in Eqs. (6) and (7) need to be
modelled, too, as will be discussed later.

3.1.4. Density-induced stratification in non-newtonian mixtures
In certain class of flow the dense phase deposited over an impermeable surface forms a

structure behaving like a non-Newtonian material. This is the case for biological material settling
in water clarifiers. In a similar context, with use of the Boussinesq approximation the momentum
equations take the form of Eqs. (1) and (2), but the buoyancy force is now driven by the difference

3 The equation of state for ‘‘humid air’’, a mixture of dry air and water vapor, is:

p ¼ qaRaH þ qVRVH ¼ qaRaHv; Hv ¼ H½1þ 0:61qV�; ð4Þ
where H stands for the potential temperature, qV for the specific humidity of water vapor, and 0.61 is the explicit value

of ðRV � RaÞ=Ra.
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between the densities of dry particles and clear water, i.e.~ff ¼ �giCðqp � qwÞ=qp. The convection–

diffusion equation for the field of suspended solids concentration C has the form of Eq. (3).
However, in order to describe the particle settling process (with or without sedimentation) the
convective process in this equation must be augmented by the gradient of the settling flux
Fs ¼ ðqwW

sCÞ in the gravity direction, where W s denotes the particle settling velocity. It the case of
falling water-droplets W s is conventionally made proportional to the Stokes velocity. In the
context of case study CS5, however, this process was modelled using the double-exponential
settling function of Tak�aacs et al. (1991)

W s ¼ W s0 e�CaC
�

� e�CbC
�
; ð8Þ

in which the coefficients Ca and Cb are subject to calibration depending on the case studied, and
W s0 is the settling velocity of reference.

The constitutive equations for the total stress rij � sij in Eq. (2) must reflect the thermodynamic
state of the fluid mixture. When the mixture does not behave like a Newtonian material, adequate
rheological properties have to be incorporated. For example, the rheology of activated sludge
(case study CS5) was incorporated according to Dick and Ewing’s (1967) recommendations, i.e.
the plastic behaviour of the sludge requires a Bingham approach. Lakehal et al. (1999) synthesized
all these properties, including the closure for the shear-induced turbulence, in the following
generalized constitutive expression:

rij � sij ¼ sb=S
�

þ 2 lp

�
þ lt

��
Sij; S ¼ 2ðSijSijÞ1=2; ð9Þ

where the yield stress sb and the plastic viscosity of the fluid mixture were approximated by
sb ¼ b1e

ðb2CÞ and lp ¼ l þ 2:473� 10�4 C2. The coefficients b1 and b2 were determined by ex-
trapolating the experimental data of Dahl et al. (1994), yielding b1 ¼ 0:00011 and b2 ¼ 0:98. In
Eq. (9), lt denotes the eddy viscosity accounting for the contribution of turbulence to the diffusive
processes in the momentum equations (see Section 3.3.1).

3.2. The Eulerian–Eulerian two-fluid approach

3.2.1. Background
This is an alternative route to model multicomponent fluids, also known as the interpenetrating

media formalism (IMF) or the continuum formulation (CF) of Ishii (1975). It assumes that the
phases present in the system behave like a continuum. The method can be employed either for
mixtures of immiscible fluids, such as bubbly flows, or for dispersed flows involving the presence
of small-scale entities such as micro bubbles, droplets and particles. The volume averaged
transport equations are in essence similar, and reflect the interpenetration of phases resulting from
interfacial forces. A conceptual clarification is necessary at this stage: The volume averaging in
question (referred to as phasic averaging) is needed for the development of the instantaneous
equations describing the present components as continuum; a further averaging (Reynolds or
Favre averaging, to which we will refer as turbulence averaging) is then performed in order to
define quantities for each phase analogous to Reynolds stresses. Generally, using the IMF, sep-
arate conservation equations are required for each phase, together with interphase exchange
terms, and, where appropriate, extra equations for turbulence modelling. In the absence of mass
or heat transfer between the phases no energy equation is needed, and a turbulence model is
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required for both phases, even if the turbulent stress tensor appearing in the momentum equations
of the gas phase is less important than in the liquid phase 4.

3.2.2. The transport equations
Although the instantaneous phasic averaged equations can be formulated differently (e.g. Ishii,

1975; Lahey and Drew, 1988; Besnard and Harlow, 1988; Joseph et al., 1990; Drew and Passman,
1999), in the volume-average formulation (e.g. Elghobashi, 1994; Lance and Bataille, 1991) the
(arbitrary) volume over which the phasic averaging is performed should be larger than the
characteristic length scale of the dispersed phase (e.g. bubble diameter, particle spacing) and much
smaller than the characteristic length of the problem. The turbulence averaging to be performed on
top of the phasic averaged equations may be either a non-weighted time average or a Favre
weighted average based on ak, the volume fraction 5, defined as ak ¼ vk; with vk (¼1 in phase k,
and 0 otherwise) being the characteristic function of phase k, i.e. the fraction of occurrences of
phase k at point x at time t. Once adopted, Reynolds averaging (U ¼ U þ /0) gives rise to two
correlations a0u0j and a0u0iu0j, respectively, in the continuity and momentum equations; the gradient
of the flux a0u0j is responsible for mass diffusion in the continuity equation. These terms require
appropriate modelling (cf. Elghobashi and Abou-Arab, 1982; Shirolkar et al., 1996; Loth, 2001).
In order to alleviate this complication, preference is often given to Favre weighted averaging
(U ¼ Ua=a), in which case the correlations a0u0j and a0u0iu0j are identically zero.

In these circumstances, for an isothermal gas–liquid mixture without phase change the (twice)
averaged transport equations can be formulated as follows:

@t akqk
� �

þ @j akqkUj
k

� �
¼ 0;

X
ak ¼ 1; ð10Þ

Dt akUi
k

� �
¼ � ak

qk
@ipk þ @j akrk

ij

�
� akskij

�
þ akg þ F k

j ; ð11Þ

where the superscript k refers either to the liquid (k ¼ l) or to the gas phase (k ¼ g). The source
term F k

j encompasses the drag and lift forces, the added mass, and the turbulent dispersion force
(TDF). A detailed description of the involved forces can be found in Smith (1998); below, we
simply describe the way these terms are generally incorporated into the system of equations.

The buoyancy forces can be imposed as extra source terms in the momentum equations, and so
can the treatment for the virtual mass. While for rigid spheres the virtual mass coefficient is
Cvm ¼ 0:5, there is no clear indication yet regarding the corresponding value for a rising bubble
swarm. Nevertheless, as a consensual solution the value of 0.5 was adopted in the past by many
authors, with the exception of Smith and Milelli (1998), who investigated the effect of varying Cvm

in the case of a confined bubble plume; see Section 4.6 (Table 1). Note that the virtual mass
force is important during the early accelerating phase of bubble-plume development but becomes
less important as steady-state conditions are approached. According to Davidson (1990), the

4 In practice the stress tensor in the gaseous phase equations is simply neglected, and a turbulence model is only

required for the liquid phase.
5 Note that rigorously ak is the ratio of the volume of component k in an arbitrary small region to the total volume of

the region in question.
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interphase drag force can be derived from a generalization of that for a single bubble, and a drag
coefficient set equal to CD ¼ 0:44 may be considered as appropriate for small air bubbles rising in
pure water. In addition, an ascending gaseous phase within a pool of water causes horizontal
shear, which in turn generates a lateral lift force acting on the rising bubbles; according to Drew
and Lahey (1987) the lift coefficient can be taken equal to CL ¼ 0:5.

The concept of a TDF has already been advanced as an approximation to the random inter-
action between eddies and bubbles (Lopez de Bertodano et al., 1994; Moraga et al., 2001). An-
other approach, called the random dispersion model (RDM), has recently been proposed by Smith
and Milelli (1998). This strategy dispenses entirely with the aforementioned artificial turbulent
dispersion models by incorporating the statistical, turbulent fluctuations in the liquid directly into
the expressions for the drag. It assumes that the fluctuating velocity components are random
deviates of a Gaussian distribution with zero mean and variance 2kl=3. More details can be found
in Smith and Milelli (1998).

3.3. Turbulence modelling

As pointed out in Section 1, all case studies reviewed in this article enter within the turbulence
modelling framework. In this section we briefly present the various turbulence models that have
been employed without exploring in depth their mathematical formalism, except when buoyancy
effects significantly alter the closure law. In all cases the turbulent stresses and scalar fluxes sij
(Eqs. (2) and (11)), u0jc0 (Eq. (3)), u0jh, u0jq (Eqs. (6) and (7)) have to be approximated via closure
laws. In the case where Eqs. (10) and (11) are derived via non-weighted time averaging the cor-
relations a0u0j and a0u0iu0j require modelling as well (Shirolkar et al., 1996; Loth, 2001).

3.3.1. Within the one-fluid approach
In the context of case study CS1 the Reynolds stress tensor sij was modelled with the aid of a

second moment closure (SMC), in which the Launder et al. (1976) proposal for the pressure strain
term and the Gibson and Launder (1978) wall reflection terms were adopted. Within the SMC
framework, the scalar flux u0jc0 (Eq. (3)) was modelled using the generalized gradient diffusion
hypothesis (GGDH) by reference to the Daly and Harlow (1970) approximation. Since the aim of
that work was to elucidate the effect of turbulence anisotropy on gas dispersion around the
building, the flow was additionally calculated with the standard k–� model of Launder and
Spalding (1974) and a zonal two-layer approach, consisting in resolving the near-wall viscosity-
affected regions by means of a one-equation model, while the outer core flow is resolved with the
standard model (cf. Lakehal and Rodi, 1997). Modelling of the scalar flux naturally followed the
eddy-viscosity/diffusivity (EVM) context in which the flux is made proportional to the mean
gradient of the variable in question.

The flow field within the street canyon (due to Theodoridis and Moussiopoulos, 2000), i.e. case
study CS2, was computed with the help of the standard k–� model and the two-layer k–� model
briefly mentioned above. Furthermore, a fast chemical reaction model based on the NO–NO2–O3

cycle permitted the determination of the subsequent production of NO2, NOx, and O3 within the
street canyon. The turbulent stresses and fluxes emerging in the context of examples CS3, CS4,
CS5, and CS6 were also modelled by use of the EVM concept.
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In the case studies referred to as CS3 and CS5 the effect of the buoyancy-induced turbulent flux
emerges in the transport equations for k and e

Dtk ¼ @i
mt
rk

@ik
� 	

� sijU i;j þ PB � e; ð12Þ

Dte ¼ @i
mt
re

@ie

� 	
þ C1

e
k

�
� sijU i;j þ PB � C3PB

�
� C2

e2

k
ð13Þ

via the production term PB, which takes the form PB ¼ �bgu0jhv in the thermally stratified flow
(CS3), and PB ¼ �bgu0jc0 in the sedimentation case (CS5), respectively. In Eqs. (12) and (13) the
r’s and C1, C2, and C3 are model constants. The density-induced production term PB represents in
a certain manner the two-way coupling between the dense phase and the liquid. The model ex-
presses the eddy viscosity mt as a function of the turbulent kinetic energy k and its rate of dissi-
pation e, using the relation mt ¼ Clk2=e. The scalar flux u0jc0 was approximated with use of an eddy
diffusivity concept. However, in the marine boundary layer, the buoyancy-induced turbulent flux
w0hv, including all sources of moisture, was approximated following Stull’s (1988) recommenda-
tion:

w0hv ¼ w0h � Hv þ H 0:61w0q0V
h

� w0q0L � w0q0D
i
: ð14Þ

The turbulent fluxes w0q0V, w0q0L, and w0q0D were also approximated using the EVM concept, with
the Schmidt number Sc taken equal to 0.95 in all cases.

In modelling density stratified flow mixtures in particular, e.g. case study CS5, one may face the
problem of fixing the model coefficients appearing in Eq. (13). While model constants Cl, C1 and
C2 may be given the well-established standard values, the magnitude of C3 must be taken as flow
dependent. Test calculations have shown that the value of C3 depends on whether PB is a source
term (in the case of unstably stratified flows) or a sink term (in the case of stably stratified flows).
Rodi (1987) suggested that C3 should fall in the range 0.8–1.0 for stable stratification prevailing in
secondary clarifiers. But, according to Shabbir and Taulbee (1990), there has been experimental
evidence that C3 falls within a lower range, in particular for strongly buoyant flows, where in some
cases it was found to attain values converging around 0:25. Although the consensual value of
C3 ¼ 0:8 has been adopted by many authors for similar problems (e.g. Dahl et al., 1994), it is
perhaps more judicious to study its influence in the context of k–� modelling (see Section 4.5).
Since in case study CS3, PB is a source term, C3 was taken equal to zero.

3.3.2. Within the two-fluid approach
The k–� model employed so far within the two-fluid formulation context (Lopez de Bertodano

et al., 1994; Lahey and Drew, 2001) has been the subject of various developments. The major issue
was the incorporation of two-way coupling effects, because turbulence in the liquid phase has a
strong influence on the void fraction distribution and bubble flattening, while fragmentation and
wobble will have feedback effects on the production of turbulent kinetic energy (Sheng and Irons,
1993). Various alternatives have been proposed to account for this dispersion mechanism (see
Moraga et al., 2001). For example, Lopez de Bertodano et al. (1994) introduced a TDF pro-
portional to the Reynolds stress tensor of the dispersed phase and a scalar coefficient dependent
on the Stokes number. Drew and Passman (1999) and Carrica et al. (1999) proposed to make this
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force proportional to the gradient of the void fraction in the momentum equations of the dis-
persed phase, in analogy to molecular Brownian diffusion. Another solution consists in adding
extra source terms to the scalar equations for turbulence, k and e, to account for the increased
generation of turbulence in the liquid due to momentum exchange between the two phases (Malin
and Spalding, 1984). In addition, Simonin and Viollet (1988) argued that the migration of bubbles
has an important effect that cannot be neglected.

Typically, at high-Reynolds numbers the system of turbulent scalar equations for the liquid
phase takes the form:

DtðalkÞ ¼ @i
~mmt
rk

@ik

 !
þ alðPk � eÞ þ Ck1~aaPk þ Ck2Cf~aak; ð15Þ

DtðaleÞ ¼ @i
~mmt
re

@ie

 !
þ al e

k
C1Pkð � C2eÞ þ Ce1~aaPk

e
k
þ Ce2Cf ~aae; ð16Þ

where Pk ¼ �slijU
l
i;j represents the shear-induced production of turbulent kinetic energy, ~aa ¼ agal,

~mmt ¼ Clalkl
2
=el, and Cf is the interface friction coefficient. In the above equations, Ck1, Ck1, Ce1, and

Ce2 represent additional model coefficients which, according to Smith (1998), take the values of
6.0, 0.75, 4.0, and 0.6, respectively. The first additional source terms in Eqs. (15) and (16) are due
to Malin & Spalding (MS); the last ones conform to the proposition of Simonin & Viollet (SV).

3.4. The Eulerian–Lagrangian formalism

3.4.1. Background
The principle of the Eulerian–Lagrangian strategy resides in the coupling between an Eulerian

field description algorithm for the steady-state flow solution and a Lagrangian scheme for
tracking individual particles within this flow field. The simulation of IP trajectories subjected to
gravitational force conventionally resorts to the equation of motion for spherical particles (Clift
et al., 1978). Subjecting the particle motion to the field turbulence requires the fluctuating velocity
field to be known (i.e. modelled). Existing dispersion models differ in the way this fluctuating field
is stochastically inferred from known turbulence quantities. Moreover, properties of heavy par-
ticles such as inertia and (for example) gravity-induced settling velocity need also to be considered.
To this end, models of various degrees of sophistication accounting for the influence of these
properties on the statistics of particle motion were proposed on the basis of theoretical studies
(e.g. Csanady, 1963; Meek and Jones, 1973) and on experimental grounds (e.g. Snyder and
Lumley, 1971; Wells and Stock, 1983). However, DNS and LES experiments such as those re-
ferred to in Section 1 have not yet been fully exploited for similar objectives. The work of Csanady
(1963), for example, helped understand the effect of slip velocity on the dispersion of IPs with
zero-settling velocity. Wells and Stock (1983) raised the question of crossing-trajectory events
caused by the combined effects of inertia and gravity forces. These two issues are at the basis of
the random-flight models discussed in this part. The next three subsections will introduce the
particle momentum equation, two of the often employed random-flight models and their recent
developments, and finally the way a typical coupled Eulerian–Lagrangian simulation proceeds.

836 D. Lakehal / International Journal of Multiphase Flow 28 (2002) 823–863



In principle, the Eulerian part of this approach consists in solving Eqs. (1) and (2). Applications
including temperature and specific humidity fields require in addition the solution of Eqs. (6) and
(7). This is particularly true for CS3, while the example of impacting rain drops (CS4) was ap-
proached under isothermal conditions. Turbulence equations similar to (12) and (13) were solved,
with PB ¼ 0 in case study CS4.

3.4.2. The particle momentum equation
The two different Lagrangian models introduced below are based on the equation of motion for

a spherical particle in high-Reynolds number flows (cf. Clift et al., 1978):

dtX
p
i ¼ Up

i ; ð17Þ

dtU
p
i ¼ 3

8r
qw

qp
CDU r

i jU r
i j þ gi

qw

qp
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��
� dtU
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þ 9Dh

2r

ffiffiffi
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r Z t
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i

dt0ffiffiffiffiffiffiffiffiffiffi
t � t0

p
�
; ð18Þ

where Up and U r are the instantaneous particle velocities in the fixed co-ordinate system, and in
the relative co-ordinate frame following the fluid motion, respectively, i.e. U r

i ¼ Ui � Up; X p
i are

the instantaneous particle co-ordinates, CD is the drag coefficient for a spherical particle, qp is the
mean density of the dispersed phase, and Da and Dh are empirical correction coefficients intro-
duced by Clift et al. (1978). In Eq. (18), terms on the right represent, respectively, the viscous
resistance to particle motion, the gravitational acceleration, the added mass which appears be-
cause the particle acceleration also requires acceleration of the fluid, the acceleration due to the
pressure gradient in the fluid surrounding the particle, and the ‘‘Basset history integral’’, ac-
counting for past accelerations in non-steady-state flow, where t and t0 represent, respectively,
initial and present times of particle motion. Note that both the Saffman and Magnus effects have
been neglected. Since the particles are supposed to be smaller than Kolmogorov’s micro-scale,
heavy (e.g. qp=qw � 10�3), spherical, and of Reynolds number always less than unity, so that the
resistance of the fluid obeys Stokes’ law, Eq. (18) can be simplified to:

dtU
p
i ¼ K

a
jU r

i j þ gi; ð19Þ

where the drag and gravity terms are the only effective forces acting on the particle. The parameter
a=K 	 sp characterizes the time scale of the particle’s inertial response to the turbulent fluctua-
tions of the fluid, i.e. the particle relaxation time. Note that in case studies CS3 and CS4, U r was
set to zero, assuming horizontally homogeneous flows. The vertical particle velocity is given by
W r ¼ �W s for particles of diameter smaller than 60 lm and W r ¼ �W s=K for particles of dia-
meter 60–180 lm, where W s denotes the Stokes velocity. According to Clift et al. (1978), K, the
ratio of the Stokes velocity to the mean relative fall velocity of the particle, adheres to the relation
K ¼ 1þ c1Re

c2
p for the drag coefficient, 6 in which c1 and c2 depend on the particle Reynolds

6 This way of expressing sp is due to Edson (1989). One can easily demonstrate that K ¼ CDðRep=24Þ,
a ¼ qpD

2=18lw, W s ¼ ag and Rep ¼ qwW
sD=Klw. Note also that Choi (1994) employed the distribution of drag

coefficients for falling water droplets measured by Gunn and Kinzer (1949). Lakehal et al. (1995) extended the

expression to high-Re particles.
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number, Rep. Further, it is assumed that the particle motion is in a quasi-steady state, so that the
particle velocity consists of the mean free-falling velocity plus a fluctuating component,

W pðtÞ ¼ W p þ wp ¼ W ðxp; tÞ � W r þ wp; ð20Þ
where W ðxp; tÞ is the mean velocity of the fluid at the particle location, and wp is the fluctuating
component which needs to be known.

3.4.3. Markov chain based algorithms (F1)
A Markov-chain sequence is a time-marching process integrating the finite discrete form of the

Langevin equation 7 that formally describes the motion of small-scale fluid entities (i.e. particles,
droplets, or fluid elements) as a stochastic process subject to a retarding force and a random
acceleration (Lin and Reid, 1962)

dw ¼ �awdt þ bnðtÞ; ð21Þ
where wðtÞ is the particle or fluid element single velocity component. nðtÞ, which is not a function
of w, reflects the rapidly fluctuating acceleration induced by forces exerted by the turbulence on
fluid particles during dt. It is modelled as a delta-function correlated in time with statistical
properties defined by (van Kampen, 1992):

nnðtÞ ¼ nðt1Þnðt2Þ � � � nðtnÞ ¼ Cndðt1 � t2Þ � � � dðt1 � tnÞ; ð22Þ

where n ¼ 1; 2; . . ., and Cn are coefficients to be determined. Consistency between Eq. (21) and
those representing the mean flow was addressed by many authors (MacInnes and Bracco, 1992).
In particular, it is required that the two forms should return identical statistical properties for the
particle motions when these are interpreted as fluid elements. This consistency, for instance, has
been proved (Pope, 1987) for homogeneous isotropic turbulence, in which case the first through
third-order moments defined by Eq. (22) reduce to nðtÞ ¼ 0, nðtÞ2 ¼ 2r2

wdt=sw and nðtÞ3 ¼ 0, where
r2
w is the variance of the turbulence velocity and sw is the Lagrangian time scale. Under these

circumstances it can be shown (Legg and Raupach, 1982) that the unknown coefficients in Eq.
(21) can be determined by a ¼ 1=sw and b ¼ rw

ffiffiffiffiffi
2a

p
. Eq. (21) has been applied by Thomson

(1971), Hall (1975), Reid (1979) and many others to particle dispersion in the surface layer as-
suming homogeneous turbulence. However, in its present form it cannot be extended to atmo-
spheric diffusion without further modifications. Legg and Raupach (1982) and Legg (1983) added
an extra term to the basic equation equivalent to a non-zero mean random forcing nðtÞ 6¼ 0. De
Baas et al. (1986) modified the first and second-order moments of nðtÞ. Recently, Nasstrom and
Ermak (1999) developed a homogeneous Langevin equation model in which higher background
velocity moments up to n6ðtÞ were taken into account. They have clearly shown that this form is
significantly more efficient than earlier ones. Beyond the concept discussed above, Pope (1994)
reformulated the Langevin equation in terms of instantaneous velocities and introduced the mean
pressure gradient to cope with non-homogeneous turbulence. This offers a major advantage in
that the separation between mean and fluctuating velocity fields is no longer necessary.

7 Its equivalent in the Eulerian frame is the Fokker–Plank equation. It is also known as the Ornstein–Uhlenbeck

process.
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The model variant (referred to as F1) employed for case studies CS3 and CS4 was developed by
Edson (1989) for the modelling of evaporating jet droplets. It was later modified by Lakehal et al.
(1995) for dispersion of hydrometeors in the surface layer. A similar technique was previously
employed by Durbin (1980) for dispersion in inhomogeneous turbulence. In this model Eq. (19) is
used to determine the statistical properties of particle motion whereas the Langevin equation in
the above-described form (valid for stationary, homogeneous turbulence) is introduced to model
the fluctuating particle velocities,

dwp ¼ � wp

swp
dt þ 2rwp

swp

� 	1=2

nðtÞ; ð23Þ

where swp now stands for the particle or droplet integral time scale, rwp is the standard deviation of
the particle’s velocity variance, and nðtÞ is a random function with a Gaussian probability density
distribution, a zero mean, and with nðt1Þ and nðt2Þ independent for t1 6¼ t2. At this stage the model
still lacks expressions for swp and rwp which, within the one-way coupling context, need to be
evaluated from their Eulerian counterparts. There have been different proposals for approaching
this similarity problem within the heavy particle limit: Edson (1989) and Edson and Fairall (1994)
related the energy spectral density of the particles with zero settling velocity to the fluid spectral
density then included the effect of non-zero settling velocity as suggested by Meek and Jones
(1973). This led to the following expression:

r2
wp

r2
w

¼ 1

1þ cv
; v ¼ a

KsL
¼ sp

sL
; ð24Þ

which is the exact form proposed by Tchen (cited by Hinze, 1975) for IPs (with no external forces)
dispersed in isotropic turbulence. The parameter v, denoting the ratio of the response time of the
particle or droplet to the Lagrangian integral time scale sL, guarantees that the particles cannot
respond to the turbulence for values of v larger than unity, e.g., when the particles encounter
smaller eddies or near the wall. The effect of varying the value of constant c (taken equal to unity
in the F1 model) is discussed by Wilson (2000). Furthermore, the presence of an external force
such as gravity induces a crossing-trajectory effect which can best be parametrized by the ratio of
characteristic velocities W r=rwp. The same arguments employed by Edson and Fairall (1994) to
derive Eq. (24) led to an analytical correction for sL, i.e the particle integral time scale swp, that
includes precisely the effect of the gravity-induced drift through

swp
sL

¼ 1

K
ð1þ vÞ; K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2 W r=rwp

� �2q
: ð25Þ

This expression reduces to the form proposed by Csanady (1963) if one takes v ¼ 0 and c ¼ sL=sE,
where sE denotes the Eulerian time scale. The non-dimensional number c, which depends on
whether the velocity component is parallel or perpendicular to the external force (Sawford and
Guest, 1991; Pozorski and Minier, 1998), was set equal to unity in the F1 model. The correction
factor 1=K in Eq. (25) reflects the de-correlating effect of the particle falling out of a fluid eddy in
which the fluctuating velocities are highly correlated. Together with v, the parameter K accom-
modates the reduction of the general expressions for particle velocity variance and integral time
scale to their equivalents for the fluid parcels as the particle radius tends to zero; they also include
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the effect of particles larger than those obeying Stokes’ law through the parameter K. The sys-
tem of Eqs. (23)–(25) can then be closed, provided the turbulence statistics of the carrier phase
expressed in terms of sL and rw are known. Using the output of the k–� model (for example)
calibrated for atmospheric and marine surface layers these two parameters are, respectively, given
by sL ¼ bk=e and r2

w ¼ 1:69C1=2
l k according to Mestayer et al. (1990). Depending on the experi-

ment referred to the values assigned for b may range 8 from 0.11 to 0.6 (see, for example, Ley,
1982; MacInnes and Bracco, 1992; Shirolkar et al., 1996, for reviews). Recent DNS of Lagrangian
statistics in uniform shear flow of Sawford and Yeung (2001) have brought new insight into this
issue.

Next, equating the discrete form of Eq. (23) to the discretized form of Eq. (19) yields the in-
stantaneous particle velocity field W pðtÞ which, with the aid of Euler’s first-order time-marching
process provides the particle trajectories. The time step is made equal to the smallest of 0:2sL,
0:2swp, and sgr; the latter constraint denotes the local grid-characteristic time scale and was in-
troduced by Lakehal et al. (1995) to avoid having the particles crossing more than one grid cell in
the course of a single integration.

3.4.4. Random eddies based algorithms (F2)
This concept (subsequently referred to as F2) is based on the same assumptions as the

Langevin-equation-based model F1, i.e. Eq. (19), but differs in the computation algorithm for
particle velocities. The variant discussed here (used for case study CS4) belongs to the class of
eddy interaction models of Gossman and Ioannides (1981) evoked previously in Section 1.
Modelling the velocity fluctuating field perceived by particles along their trajectories is based here
on the generation of random eddies from the modelled turbulence field with which individual
particles are continuously interacting. The particle velocity remains constant during each particle–
eddy interaction time, while the eddy velocity remains unchanged till the next interaction process.
The fluctuating components u0iðtÞ of the instantaneous fluid velocity are determined randomly
from an isotropic Gaussian distribution with a variance equal to 2k=3. The PDF, for example, of
the third component (i ¼ 3) reads

P ðw0Þ ¼ 1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffi
2k=3

p exp

�
� w02

4k=3

�
: ð26Þ

The characteristic size of a specific eddy ‘‘crossed’’ by a particle is generated by reference to the
dissipation length scale ‘e ¼ C3=4

l k3=2=e. Proper model usage therefore relies on the choice of an
appropriate ‘‘correlation time’’ sc, during which the fluid correlation is effectively equal to unity,
i.e. the time over which the particle velocity can be assumed to be constant. In order to account
for crossing-trajectory effects, sc can be chosen to be the smallest of the local values of the par-

8 It was taken equal to 0.11 for the atmospheric surface layer by Lakehal et al. (1995) and to 0.18 for the marine

sublayer by Edson et al. (1996). In reality, b results from the analogy between the Lagrangian velocity structure

function determined from Eq. (21), DðdtÞ ¼ ½wðt þ dtÞ � wðtÞ�2 ¼ ð2rw=sLÞdt, and the one derived from the

Kolmogorov theory of local isotropy, according to which DðsÞ ¼ C0eðtÞs exhibits an inertial subrange in the interval

of scales s ranging from the Kolmogorov time scale sg to sL. It follows that sL ¼ bk=e, where b ¼ 4=3C0.
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ticle’s residence time within the eddy sr and the lifetime (or eddy turnover) of the specific eddy se.
These can be determined (for a single component velocity field, say W) by

sr ¼ ‘e=jW rðtÞj ¼ ‘e=jW þ w0ðtÞ � W pðtÞj; se ¼ ‘e=jw0ðtÞj: ð27Þ
The first time scale is a measure of the minimum time it would take a particle to cross an eddy with
characteristic dimension ‘e; the second one refers to the lifetime of the eddy in question. If sc
estimated from Eq. (27) is smaller than the eddy lifetime, the particle would jump to another eddy,
which then causes a discontinuity in the perturbation field u0i. This means that a particle may not
remain trapped inside an eddy for the entire lifetime of that eddy if the free falling velocity of the
particle is significant enough to precipitate the migration to another eddy. Since the relative ve-
locity W rðtÞ is unknown during the next particle–eddy interaction time it can be approximated by
the one at the beginning of the new interaction. Even though the original approach as described
above has proven efficient in treating various dilute turbulent two-phase flows, several analyses
have shown the existence of intrinsic drawbacks. First, various other expressions for sr were
proposed in the literature to allow the model to account for the possibility of finite-inertia par-
ticles dispersing faster than the fluid particles (cf. Shirolkar et al., 1996; Graham, 1998; Chen,
2000). To account for turbulence anisotropy Zhou and Leschziner (1991) redefined the correlation
time sc as a tensor by including individual Reynolds stress components rather than its trace (k),
i.e. scij ¼ Csðk2=u02i u02j Þ

1=4k=e. This is conceptually more rigorous and advantageous when a second
order closure for turbulence solving for individual stress components is adopted. In the same
context, another possibility would be to include the normal Reynolds stresses only while sampling
the fluctuating velocities or velocity variances.

The importance of accounting for turbulence inhomogeneity was discussed by MacInnes and
Bracco (1992) and recently by Chen (2000). This is important, since by assuming constant sampled
fluctuating velocities during each particle–eddy interaction time the original model tends to ex-
aggerate the rate of turbulence transfer from high- to low-turbulence intensity regions. MacInnes
and Bracco (1992) found that in the non-inertial tracer limit, particles concentrate where the
turbulence intensity is a minimum (at shear layer edges), and are depleted in regions of high-
turbulence intensity (near the core of the shear layers).

The assumption of streamwise quasi-homogeneity of the flow was invoked in both case studies
CS3 and CS4. Regarding this simplification, Lakehal et al. (1995) attempted to extend this model
to non-homogeneous flows by generating the horizontal fluctuating component (this latter model
will subsequently be denoted by F3). They showed that the correlation between the horizontal and
vertical fluctuating velocities can be constructed such that

w0ðtÞ ¼ rwn1ðtÞ; ð28Þ

u0ðtÞ ¼ run2ðtÞRuw þ rwn3ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

uw

q
; ð29Þ

Ruw ¼ u0w0

rurw
; ð30Þ

where Ruw denotes the autocorrelation factor and n1ðtÞ, n2ðtÞ and n3ðtÞ are random numbers drawn
from three independent Gaussian distributions P ðu0iÞ given by Eq. (26) with zero mean and unity
variance.
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Finally, in an application the random-flight tracking algorithms F1 and F2 proceed as follows:
During each correlation time the particle is advected N time steps (Dt ¼ sc=N ), and the particle’s
instantaneous velocity and position are determined by integrating Eq. (19) over sc, using an
Adams-Bashforth time-marching scheme. The process is repeated until the particle moves to the
walls or out of the calculation domain, with no particle–wall impact model employed.

4. Computational examples

This part of the paper introduces the selected computational examples regarded as best rep-
resentatives of the physical case studies typical of environmental and hydrodynamic applications
described in Section 2. The solution procedure for each test case has been discussed in the previous
section; numerical solution effects and other related issues such as convergence problems, ad-
vection and time-marching schemes, etc., can be found in the referenced papers.

4.1. Gas dispersion around an isolated building

This test case was studied experimentally and numerically by Delaunay et al. (1995) and
Delaunay et al. (1997) at the CSTB of Nantes, France. Details of the experimental conditions can
be found in Delaunay et al. (1995). The goal of the investigation was to understand the way
external flow conditions may affect the dispersion of the contaminant around a building (isolated
or placed within an aggregate of similar buildings). We report here on the results of a single
building only. The 1=125 scale building model (H 2 � 6H ) was placed within an atmospheric wind
tunnel having a working cross-section of 8 m2. The incident wind impinging on the lateral face of
the obstacle was highly turbulent (Tu � 16%), and the Reynolds numbers based on the model
height ranged between 10.000 and 40.000. A mixture of air and ethane was ejected at a speed of
2 m/s from six chimneys 4 mm in diameter and 96 mm high. The computational grid employed for
high-Re computations consisted of 370.000 grid points, whereas the one used for computations
with the two-layer k–� model comprised 1.000000 nodes. In both cases the grid covered only half
the domain. The calculation procedure was based on the Eulerian–Eulerian approach discussed
previously. Turbulent stresses were modelled by means of two different eddy viscosity models and
a second-moment closure.

The predicted flow fields in the vicinity of the obstacle clearly indicated that the various re-
circulations of the wind (on the sides and on top of the building) can be captured only with the
SMC approach, despite the fact that the low-Re EVM computations provided a much better flow
resolution near the ground wall (results not included here). An earlier result obtained with the
standard model is shown in Fig. 1(a); it shows a rather complex flow structure with a large re-
circulation behind the obstacle and a horseshoe vortex close to the wall. However, a close look at
the figure reveals that the k–� model with wall functions produces an unrealistic re-attachment on
the roof, whereas experimental observations have shown that the flow there separates from the
leading edge and re-attaches at the trailing edge of the obstacle. Another computation has shown
that using the two-layer approach alone will not prevent unrealistic re-attachment of the flow on
the roof either. This behaviour is well recognized to be the direct consequence of employing
EVMs, since these tend to produce spurious amounts of turbulent viscosity in the stagnation
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region, altering the resolution on top of the obstacle (Lakehal and Rodi, 1997). Consequently the
error in the concentration field calculated with EVMs may attain �100% (Fig. 1(a) does not
include experimental results). In contrast, SMC results reported in Fig. 1(b) compare very well

Fig. 1. Distribution of contaminant isocontours. (a) k–� results (from Delaunay et al., 1995); (b) SMC results (from

Delaunay et al., 1997); continuous lines: calculations, x symbols: experimental results.
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with the data. Iso-contours of concentration on both the side and the leeward walls were predicted
perfectly. The lack of measurements on top of the obstacle did not allow further comparison.
Also, using the generalized gradient law GGDH for the scalar flux did not show any particular

Fig. 2. Velocity vectors (a), non-dimensional concentrations (b), and pollutant concentrations NOx – left and O3 – right

(c) computed with the k–�model and the two-layer model for the square (left, a and b) and deep (right, a and b) flat-roof

cases (from Theodoridis and Moussiopoulos, 2000).
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advantage over the simplified gradient law. The conclusion of this investigation confirmed a
statement postulated earlier: Second-moment closures are the minimum level of modelling re-
quired for turbulent mixing of a passive scalar in highly strained flows featuring a significant rate
of turbulence anisotropy.

4.2. Pollutant dispersion within a street canyon

As mentioned previously, this case was investigated by Theodoridis and Moussiopoulos (2000)
(see also Moussiopoulos et al., 1998). Two street canyon configurations were used, a rectangular
one with a height-to-width ratio H=W equal to 1, and a deep one with H=W ¼ 2. The conditions
of a typical atmospheric boundary layer were set as inflow conditions based on the experiment
reported by Rafailidis (2000).

Fig. 2(a) illustrates the velocity fields; it shows the development of a primary large-scale vortex
covering most of the canyon region together with a smaller one at the leeward corner. In the deep-
canyon configuration the corresponding primary vortex is much weaker, while almost stagnant
conditions are established near street level due to the existence of a weak counter-rotating vortex.
In Fig. 2(b), compares the distribution of the non-dimensional concentrations in both configu-
rations. In the first case the maximum concentrations appear on the leeward wall due to the
combined actions of the two vortices. The standard models tend to overestimate the peak con-
centration, but apart from this behaviour the results are globally satisfactory. The corresponding
NOx and O3 concentration levels are displayed in Fig. 2(c): It shows high-NOx concentration
levels on the leeward side, while O3 seems to be depleted within the canyon. More importantly,
this simulation has clearly demonstrated two facts: (i) the oxidation of NO and NO2 leads to a
significant increase in NO2 concentration and (ii) the NO2-to-NOx ratio varies linearly with the
background ozone levels.

Compared to the previous example, here the standard k–� model and its low-Re variant show a
real potential for capturing the flow and pollutant concentration fields. The reason for this is
attributable to the considerable complexity of the three-dimensional problem (CS1), which poses
a great challenge to conventional eddy-viscosity models, known for their vulnerability to capture
impinging flows followed by recirculations. The flow structure within the two-dimensional canyon
is obviously less complex than that around the building. The present results suggest the standard
model to be well suited for use with a Navier–Stokes solver as a fast and robust predictive tool for
identifying urban areas in which peaks of ozone could occur.

4.3. Droplet dispersion over a marine boundary layer

This case refers to the two-dimensional simulation of the turbulent transport and evaporation
of droplets ejected by bursting bubbles within various simulated air–sea stable, near-neutral, and
unstable marine boundary layers (MBL) performed by Edson and Fairall (1994) and Edson et al.
(1996). The aim was to validate an integrated Eulerian–Lagrangian algorithm by comparing its
results with droplet dispersion measurements made during the CLUSE 9 campaign conducted at

9 CLUSE: a French acronym translating the one-dimensional stationary boundary layer.
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IMST, Luminy, France (Mestayer et al., 1990). The two-dimensional computational domain
scales exactly with the wind tunnel at IMST, i.e. 50 m� 0.85 m plane section. Turbulence in the
wind tunnel was isotropic and homogeneous. The flow, temperature and specific humidity fields
were calculated according to the description given in Section 3.1.3, and reference was made to the
k–� model modified to account for buoyancy-induced production. The random-flight algorithm
employed was based on formulation F1 described previously. More details on the computational
methodology are available in Edson et al. (1996).

Flow field results due to the use of the Eulerian model in general compared very well with
measurements. Note that this comparison was made first for an equilibrium channel flow; the
marine boundary layer results were later compared with the Lagrangian results of the model. The
same trend was also apparent in the vertical temperature and humidity profiles predicted at
various locations and for three different humidity levels (95%, 77%, and 55%). Of primary interest
among results of the Eulerian model is the shear stress �u0w0 profile depicted in Fig. 3(left), which
also compares well with the data at the wind speed of 7.5 m/s. This result confirms that the
standard model is capable of simulating the two-dimensional developing surface layer with rea-
sonable accuracy. The question on how the quality of these Eulerian results affect the output of
the Lagrangian module is answered in the context of Fig. 3(right). The figure compares droplet
volume spectra as functions of droplet radius and shows the Lagrangian part of the coupled
algorithm to perform very well, too, except that it underestimates the vertical dispersion of larger
droplets. This result may first suggest that random-flight schemes must use the same spatial di-
mensionality as the flow field. The influence of droplets on the scalar fields is discussed in the
context of Fig. 4. The left part of the figure presents the difference in temperature profiles due to
the presence of droplets. It shows that the near-surface air temperature increases with specific
humidity, i.e. there is a release of sensible heat, which, according to the authors, is attributable to
weak evaporative cooling at high humidity. The figure on the right side displays the change in the

Fig. 3. Predicted u0w0 profiles (left) and droplet volume spectra as a function of radius (right) versus experimental data

taken at the CLUSE campaign – IMST, France. Results taken from Edson et al. (1996).
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specific humidity field induced by the droplets. Physically, it conforms to the previous figure in
that, due to the evaporation of droplets, the lower near-surface temperatures are associated with
higher specific humidities.

Before proceeding further with the comparisons, it is worth examining the performance of
formulation F1 in predicting the dispersion of both small and heavier droplets, i.e. 20 and 100 lm
in diameter (Fig. 5), by way of an earlier investigation of the authors (Edson and Fairall, 1994).
These results indicate a clear dispersion of the smallest droplets, whereas heavier ones are dom-
inated by inertia. In a separate simulation reproducing droplet dispersion within a high-wind
marine boundary layer, representative of conditions of an open ocean, the authors pointed out a
significant influence of droplet evaporation on the surface energy budget, in particular both the
mean profiles and the sensible and latent heat profiles may be strongly affected by the droplet
ejection height (Edson et al., 1996).

This challenging test case reveals that a coupled Eulerian–Lagrangian model is capable of
simulating the influence of droplet evaporation and sensible heat release on the surface energy
budget. Among the various findings, the authors concluded that an increase in turbulence in-
tensity due to high-shear rates does not increase the effect of droplet evaporation on the tem-
perature and humidity fields as long as the waves do not participate in ejecting further droplets.
Understandably, this issue to date still is an open question. In particular, the possible amplifi-
cation of particle vertical dispersion by the waves has not yet been clarified. The random flight
algorithm F1 employed for this case was developed for isotropic turbulence and accounts for
particle dispersion in one direction only. The success of this investigation is related to the nature
of the reproduced flow; indeed, a developing surface layer with an oncoming quasi-isotropic
turbulence is conceptually in reach of a simple eddy-viscosity model. However, it is not yet clear
whether the modifications to the surface energy budget are due to small droplets or to heavier
ones. The answer to this question will indirectly help examine and evaluate the parametrization of
the Lagrangian model assuming isotropic turbulence. In other words, it is possible that large

Fig. 4. Influence of droplet evaporation on the temperature field (left) and the specific humidity field (right). Results

taken from Edson et al. (1996).
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droplets are the only source responsible for the distortion of the surface energy budget, in which
case subjecting their motion to field turbulence is simply useless.

4.4. Tracking raindrops and impact in a street canyon

This test case was studied by Lakehal (1991) and Lakehal et al. (1995). It forms part of a more
general investigation dealing with pollutant dispersion in the urban atmosphere (Mestayer et al.,
1993). The flow field was computed in a two-dimensional plane and the effects of thermal strat-
ification were ignored. The standard k–� model was employed with wall functions. The structure
of the flow inside the canyon obtained from the Eulerian part of the model (results not included
here) is very similar to that shown in Fig. 2(a): the wind flow above the canyon is only slightly
perturbed as is typical of ‘‘skimming flows’’ over relatively narrow streets, and a large-scale vortex
structure is established within the canyon, close to the wind-facing wall.

In this simulation, the rain was simulated by a line of 100 elevated point sources located at an
arbitrary height of three times the building height, each ejecting 200 particles of different diam-
eters (0:2 < D < 1 mm). The initial particle velocity was set equal to its steady-state fall velocity.
Fig. 6(a) displays particle trajectories of a series of five drops (D ¼ 0:2 mm) ejected from selected
point sources using formulation F1; a similar simulation with model F2 is displayed in Fig. 6(b).
As compared to the simulations (results not shown here) with heavier droplets (D ¼ 1:0 mm), the
effects of turbulent dispersion were most noticeable for the smallest particles. In fact, the large

Fig. 5. Simulated droplet trajectories from the CLUSE campaign: (a) D ¼ 20 lm and (b) D ¼ 100 lm. Results taken

from Edson and Fairall (1994).
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drops can only be slightly deviated by the mean motion of air and their vertical dispersion ap-
parently remains negligible.

The raindrop spectrum in this simulation was based on the semi-empirical formulation of Best
(1950). The Lagrangian module determines the trajectory of each particle until it impacts a sur-
face. The water flow rate can then be collected per unit time and unit area over each surface, and
the quantity effectively collected can be determined by combining those data with the rain
spectrum of Best (1950). The experimental data employed for comparison originate from the field
measurements of Hilaire and Savina (1989) at an outdoor site in Nantes, France. Fig. 7 compares
the computed water rates, normalized to the number of injected drops in this category, with the
numerical (dashed lines) and experimental (symbols) results of Hilaire and Savina (1989). Their
measurements were made with driving rain collectors deployed at two levels (about 9 and 14 m) at
the centre and close to both ends of the windward-facing walls of the first and third buildings in
the array. The third building is referred to as the ‘‘protected building’’, and the first as the
‘‘unprotected building’’. While the measurements close to the building corners have been analyzed
from a wind-engineering point of view, only the measurements made in the Euler–Lagrangian
simulation of raindrop trajectories on the central section of the facades can be compared to the
two-dimensional simulations. Hilaire and Savina (1989) simulations were based on the compu-
tation of mean flow lines for drops of various sizes, deducing the air mean flow lines from Wise
(1965) flow measurements in a wind tunnel around one isolated and two parallel model buildings.

Fig. 6. Series of particle trajectories obtained using models F1 (a) and F2 (b) for particle diameter D ¼ 0:2 mm, and (c)

D ¼ 1 mm using F1 (from Lakehal et al., 1995).
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Their calculations largely overestimate the measurements on the unprotected building. They agree
relatively well with the measurements on the protected building and with the present simula-
tions using models FI and F2. Although there exists only a small number of reliable measure-
ments, the encouraging predictive performance of the different Lagrangian models applied in this
case is noticeable. As was expected on the basis of results of the second computational example,
the standard model is capable of predicting quite well the flow within the two-dimensional can-
yon.

In conclusion, proper modelling of this type of flow would require the inclusion of the dis-
persion in the direction normal to the mean particle trajectory (e.g. transition to formulation F3)

Fig. 7. Computed (Lakehal et al., 1995) vs. measured (Hilaire and Savina, 1989) total rates of water impinging on the

windward wall of unprotected (a) and shadowed buildings (b).
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and the computation of all particle velocity components (e.g. Haworth and Pope, 1987). In
strongly anisotropic turbulence the corrections enumerated previously for the correlation time
scale and velocity sampling would be of little effect without a second-order closure model. The
other alternative that needs to be explored is the one based on the LES of the flow field, providing
the Eulerian turbulence statistics without approximation. In a first step these data can be em-
ployed to determine the particle turbulence statistics at the subgrid level following the same
similarity principles as those given by Eqs. (24) and (25). This was already done by Wang and
Squires (1996) who modelled the subgrid-scale (SGS) velocities as a random Gaussian process and
added them to the filtered field. For the specific application they considered (aerosol dispersion)
the effect of the SGS model on the particle motion was negligible. The same conclusion was drawn
by Armenio et al. (1999), who explored the effect of the SGSs on IP motion, and it is most likely
that heavier particles will be even less sensitive to SGS turbulence and will not require SGS
modelling either.

4.5. Sedimentation in an axisymmetric circular tank

Flows similar to the one presented below (due to Lakehal et al., 1999) including strong density
effects, were already reported by Lyn et al. (1992), Zhou et al. (1992), Zhou and McCorquodale
(1992), Szalai et al. (1994), Krebs et al. (1996) and others. Most of these contributions applied the
k–� turbulence model in two dimensions, except for Vitasovic et al. (1997) who extended the
calculations to three dimensions. However, Zhou and McCorquodale (1992) employed an alge-
braic stress model and this results in better predictions than the standard model. Compared to
these and to many other studies the contribution of Lakehal et al. (1999) to be discussed here
introduced further innovations with the inclusion of a rheology function to the highly concen-
trated sludge mixtures. Their approach was somewhat different from that of Dahl et al. (1994). It
should be emphasized that at the time these simulations were conducted no reliable measurements
were available to verify the results produced by the numerical method.

The flow field was obtained by solving the unsteady axisymmetric RANS equations in a cy-
lindrical coordinate system. The k–� model was used for turbulence modelling, together with wall
functions. The suspended sediment concentration was determined by solving Eq. (3), into which
the particle settling velocity was introduced. Also, the damping influence of stratification on the
production of turbulent kinetic energy was expressed as a source term appearing in the transport
equations of turbulent kinetic energy k and its rate of dissipation.

The computational domain is shown in Fig. 8(a). The panels below present snapshots of the
concentration field predicted at three time steps in the situation referred to by the authors as the
reference case, i.e. the constant C3 in Eq. (13) was set equal to unity. These snapshots reveal in
particular the best known features of this flow, such as a quasi-coherent large-scale motion about
the interface, an induced reverse flow on top of the sludge, a forward-flow layer developing on top
of the reverse flow and below it, a counter current causing the part of the sludge blanket near the
bottom to flow towards the central sludge withdrawal, etc. (cf. van Marle and Kranenburg, 1994;
Krebs et al., 1996). The sensitivity to the value of C3 is analyzed in the context of Figs. 9(a) and
(b), displaying the velocity and concentration profiles resulting from calculations with variable C3-
values. Including the sink term PB in Eq. (13) causes the values of turbulence dissipation rate e to
decrease and subsequently those of the eddy viscosity mt to increase. An increasing mt in turn
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promotes the turbulent diffusive transport of all quantities. Since the strongest influence of this
kind is obtained with C3 ¼ 0, the velocity and concentration gradients are smoothed with distance
from the inlet, while without sink term in Eq. (13), C3 ¼ 1:0, gradients remain much sharper
throughout the tank; the sludge blanket remains more compact and better defined. This behaviour
reveals the crucial importance of determining the eddy viscosity in the computation of buoyancy-
affected flow and hindered settling of activated sludge. In conclusion, this shows the need for
reliable experimental investigations for the purpose of model calibration and verification, espe-
cially for distinctly stratified flow.

The influence of the Bingham rheology approach, Eq. (9), on the flow and concentration
profiles is shown in Figs. 10(a) and (b). Generally introducing a plastic viscosity lp as a function of
concentration and a yield stress sb causes the sludge blanket to rise while its surface remains sharp;
see Fig. 10(b). But as shown in Fig. 10(a), the velocities within the sludge blanket decrease as the
applied shear stress now produces a smaller shear rate. The role played by the yield stress is made
more apparent by drastically increasing the value of sb by a factor of 100 in order to consider the
stiffness of the sludge under small shear and high-concentration conditions. The analysis of
rheology effects gives a clear indication of the sludge removal mechanism. Since in prototypes the
settled sludge cannot be removed without removal equipment, while the numerical model suggests

Fig. 8. Computational domain (a) and time evolution of scalar concentration at three time-steps (b) during the early

stage of the simulation.
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a self-sustaining sludge transport, the thickened sludge must in fact exhibit a distinct Bingham-
type behaviour. Lakehal et al. (1999) and later Armbruster et al. (2001) concluded that in a tank
with inclined bottom the function of a scraper removal system is to overcome the yield stress and
to make the mixture flow rather than to induce a centerward sludge transport as such. Apart from
this, the authors of that work also investigated the effect of varying the settling velocity function
(Eq. (8)). With an alternative set of parameters typical for another design they observed a strong
influence on the thickening characteristics of the sludge, similar to what has been observed with
varying coefficient C3 in Eq. (13).

To summarize, this application highlights two major uncertainties: Both the constitutive
equations for the dispersed phase and the settling velocity function are directly based on exper-
imental data. But more importantly, this class of flow cannot be treated with a turbulence model
offering a large flexibility for tuning constants, in particular those associated with buoyancy-
driven forces.

4.6. Analysis of a confined bubble plume

In most of the experiments dealing with air-bubble plumes water has always been utilized as
simulant material, though some work on helium–water and nitrogen–mercury systems has also
been reported; see, for example, Mazumdar and Guthrie (1995) for a review. The data refer ex-
clusively to the injection of non-condensible gases into liquid pools. The main experimental

Fig. 9. Influence of turbulence-model constants C3 on the radial velocity (a) and particle concentration (b). Results

taken from Lakehal et al. (1999).
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findings can be summarized as follows: For air-water systems, bubble spreading is approxi-
mately linear, whereas for helium-water and nitrogen-mercury systems the lateral plume growth
can be more pronounced. In all cases the radial distribution of void fraction a, bubble frequency,
and gas and liquid rise velocities follow a Gaussian distribution. Also, an unsteady distortion of
the plume may occur, although at a non-regular frequency. It is of course expected that by use of
rigorous computational methods for this type of flow, together with appropriate modelling
strategies for the physical mechanisms could lead to a reasonable prediction of these general
trends.

The present results are taken from a validation exercise based on air-water tests reported by
Anagbo and Brimacombe (1990), in which a clear bubble swarm was produced by air injection
into a cylindrical water vessel through a porous plug in its base. The bubble plume rises to the
surface, entraining liquid from the pool and generating a large-scale circulation. The results
presented here were obtained by Smith and Milelli (1998) from their analysis of the case of the
lowest gas-injection-rate (M ¼ 12 l/min.); in the experiment this particular flow condition led to
negligible fragmentation and coalescence and to a uniform bubble size-distribution (D � 3 mm)
with height. At the inflow plane, the gas velocity was adjusted to reproduce the total gas flow rate
M with the liquid and gas volume fractions set equal to al ¼ 0:38, ag ¼ 0:62, and axial velocities
Wl ¼ 0:0 m/s and Wg ¼ 0:114 m/s, respectively. More details on the solution procedure and
boundary conditions can be found in the cited paper.

Computed plume widths at three elevations are compared against (normalized) experimental
data in Table 1 for each model. Some of the rows in the table are grouped into pairs to indicate

Fig. 10. Effect of the Bingham plastic model on the radial velocity (a) and particle concentration (b). Results taken

from Lakehal et al. (1999).
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analogous modelling assumptions. The RDM of Smith and Milelli (1998) for bubble–eddy in-
teraction (see Section 3.1.2) introduces artificial variations in the scale of the eddy lifetimes
(se � 0:2–0:3s), in very much the same as by use of Eq. (27) for the class of random flight algo-
rithm discussed in Section 3.4.4. These imposed changes in time scales will be superimposed on
those of the mean flow. A meaningful comparison of results with the turbulent dispersion force
(generally employed in steady state) model can therefore be obtained only after averaging.

For the reference case, Case 1, with no forces apart from buoyancy and drag, no spreading of
the plume occurs. This is clearly supported in the context of Fig. 11(left) displaying the void
fraction contours in a vertical plane through the centre of the plug. Cases 2 and 3 confirm that the
(empirical) TDF and (mechanistic) RDM models both induce plume spreading by identical
amounts; see Table 1. The contour plot in Fig. 11(right) shows that some spreading has actually
occurred using the TDF model, but the spreading angle remains relatively small (�5�). The re-
maining rows in Table 1 demonstrate that the TDF model is very sensitive to further modelling
assumptions, and it is therefore possible to optimize coefficients in order to obtain a better fit to
experimental data. Radial profiles of the bubble and liquid rise velocities 30 cm above the plug for
both models (cases 7/8 in Table 1) are shown in Fig. 12. Those of the RDM model are long-term
averages. None of the models is capable of correctly reproducing the center-line bubble velocity,
and, even though predicted results for the liquid velocity follow the experiments, the overall values
are predicted too low. In summary, the RDM model seems to be much more resilient, and its
strictly mechanistic approach to turbulent dispersion would seem to offer better opportunities for
the development of trustworthy, two-phase-flow turbulence models. This rationale should un-
derline an increasing interest in LES approaches for the prediction of this class of flow, but since
this is a new territory, various roadblocks need to be circumvented first, as will be discussed in the
concluding section below. Note, though, that the authors from whom these numerical results
were borrowed are already exploring the LES approach for this class of flow (Milelli et al.,
2002a,b).

Fig. 11. Void fraction distributions in the midplane of the pool: (left) without turbulent dispersion model; (right) with

the TDF model. Results taken from Smith and Milelli (1998).
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5. Concluding remarks and future developments

In this paper selected applications typical in environmental and hydrodynamic research were
introduced together with the corresponding solution procedures adopted over the past nearly
three decades, some of which have occasionally been of debatable quality. The aim of the con-
tribution was to highlight the progress achieved in simulating these flows, with an emphasis on the

Fig. 12. Mean bubble and liquid rise velocities obtained with both approaches for modelling the TDF. Results taken

from Smith and Milelli (1998).

Table 1

Comparison of plume spreading statistics for various model assumptions

Case no. Model identifier Elevation (mm)

100 200 300

0 Experiment 100 100 100

1 No Models 73 48 36

2 TDF 75 68 72

3 RDM 75 68 69

4 TDFþSV 100 100 95

5 RDMþSV 80 75 69

6 TDFþSVþL(0.5) 118 117 113

7 RDMþSVþL(0.5) 91 80 79

8 TDFþSVþL(0.1) 100 100 90

9 RDMþSVþL(0.1) 74 63 63

TDF––Turbulent Dispersion Force, RDM––Random Dispersion Model, L––Lift force (with coeff.) SV––Simonin and

Viollet Model.
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efficiency of computational analyses in general and their actual role in prediction and design
processes. The deliberate choice of these applications was motivated by the variety of their
properties: Flows were either isothermal or stratified, with or without phase change, with both
Newtonian and non-Newtonian properties, etc. The dispersed phases were of different kind, too:
Particles, droplets, bubbles, almost passive or with settling properties, smaller than the Kol-
mogorov micro-scale and heavier than the carrier fluid, etc. Even if the paper is not written in the
strict spirit of a review, the introduction of various applications together with the solution
methods may serve as a guideline for newcomers to this wide field since it attempts to indicate
which solution method is to be employed for a particular type of problem.

The central remarks to be emphasized on the basis of the case studies presented here are:

• The error in the dispersed concentration field around blunt structures may attain �100%
when resorting to EVMs. Low-Re variants are not capable of performing any better; they
are not suitable for atmospheric type flows anyway. The presented results have been confirmed
in other works dealing with gas releases from groups of buildings, e.g. Hangan (1999) and Cas-
tro et al. (1999); the latter contribution reports on deviations of EVMs predictions from mea-
surements of about �50%. Reynolds stress models were found to be the minimum level of
closure required for the mixing of contaminants around a single obstacle, where turbulence
is highly anisotropic. But if this sophisticated strategy has proven valuable in view of the exam-
ple presented, this does not mean that it would perform with comparable accuracy for a typical
urban canopy, where the flow is very complex. Recent LES applications to similar flows, e.g.
Rodi et al. (1997), have shown a clear superiority over RANS simulations. The interest in
LES for the prediction of atmospheric dispersion in general is now gaining in popularity,
and promising results have already been communicated, e.g. by Patton et al. (1998) and Mura-
kami (1997).

• In the sedimentation problem, turbulence equations were found to lack correct parametrization
and a strong dependence of results on the value of a single constant associated with the buoy-
ancy generation term was revealed. And, although these buoyancy forces were found to dom-
inate over turbulent stresses, a complete SMC for all turbulent fluxes appears to be necessary,
along with a prognostic equation for the scalar variance c02. Another plausible alternative
would consist in employing an algebraic k–c02–e–ec model as proposed by Kenjeres and Hanjalic
(2000), in which the turbulent scalar flux u0jc0 is provided by an algebraic flux model. The ad-
vantage of using this form is that it includes all terms responsible for the production, i.e. by
scalar gradients, mechanical deformation, and buoyancy-driven turbulence modulation. Extra
transport equations for the scalar variance and its rate of dissipation ec are necessary, though.
Apart from the turbulence modelling issue, the investigation revealed the importance of appro-
priate parametrization of the settling velocity and the constitutive equations for the non-
Newtonian material. But, unlike for turbulence modelling, there is not much to expect apart
from referring to reliable experiments.

• Results of modelling the dispersion of evaporative droplets over the marine boundary layer us-
ing the random-walk model F1 compared well with measurements. This is partially due to the
favorable experimental conditions that have been reproduced by the model: An isotropic grid
turbulence in a quasi-homogeneous flow. The relevant processes representing the conditions
over the oceans are not easy to reproduce; the model may then behave differently. In the other
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example involving raindrop tracking, the random flight models for heavy particles with inertia
were almost of equal predictive performance, although those based on the Langevin equation
were slightly better in sensitizing the smallest particle trajectories to the field turbulence.
All variants have readily shown that turbulent dispersion is most noticeable for the smallest
particles only (D < 0:5 mm). Apart from this, coupling these Lagrangian techniques with iso-
tropic turbulence models has been and will remain questionable. First difficulties already ap-
peared with the case of impacting rain drops, as compared to the dispersion of droplets over the
marine boundary layer, and it is likely that further difficulties will be faced in more challenging
complex flows. The main weakness of Markov chain approaches based on the Langevin equa-
tion (written in the forms discussed in this paper) is their construction on the basis of a single
particle velocity fluctuation. MacInnes and Bracco (1992) proved that even under its simplified
variant, the generalized Langevin equation of Haworth and Pope (1987) (not discussed in the
corresponding section) which involves the generation of the three-dimensional fluctuating field
is the best in its class. Several important modifications to the other type models based on the
random generation of eddies were discussed in this paper, too, but it is evident that only with
the LES approach can the number of approximations be substantially reduced.

• The hypothesis of turbulence isotropy is known to be notoriously incorrect in case of bubble
plumes. The Reynolds stress models, which in principle are appropriate for anisotropic turbu-
lent flows, are unstable and not sufficiently robust. But even with the help of this strategy it is
most likely that the interaction between the large-scale structures and the bubbles will remain a
matter of ad hoc approximation based on scaling arguments as long as Reynolds averaging is
adopted. Therefore, attention must focus on LES in which the integral scales of turbulence are
solved explicitly while only the SGS portion is modelled. The advantage in relation to bubble-
laden flows is that the dispersed phase should directly (without model) interact with eddies hav-
ing at least the same size, but not with the smallest ones. However, since this is a new field of
study, many open questions will need to be addressed, in particular the way a universally ac-
cepted, two-phase SGS model including bubble-induced dissipation (if and when appropriate)
can be derived.

• Apart from the optimization of settling tanks, turning to computational analyses of either type
does not seem yet to contribute much to the prediction of pollutant and hydrometeor disper-
sion in the atmosphere. Paradoxally, the simulation of bubbly plumes seems to me much
throughly investigated in metallurgy and nuclear energy research than in environmental hydro-
dynamics. Studying the dispersion of marine droplets and its global effect on the sea–air inter-
action remains confined to laboratory scales.

The central remarks enumerated above suggest that future developments should account for
turbulence in a more sophisticated fashion. Indeed, apart from the case of particle sedimentation
in water clarifiers, the other applications around which this work has been centered raise all the
difficult challenges of considering the entire spectrum of scales ranging from those of micro
droplets to those of large turbulent eddies evolving within the atmospheric boundary layer.
Without any doubts, in this class of flow great interest in the near future will turn towards the LES
approach. While examples like case studies CS1 and CS2 will not face particular difficulties, those
treated within the Eulerian–Lagrangian framework would require new developments for particle
turbulent statistics at the SGS level.
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